Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer
نویسندگان
چکیده
Motivation To understand the molecular mechanisms involved in cancer development, significant efforts are being invested in cancer research. This has resulted in millions of scientific articles. An efficient and thorough review of the existing literature is crucially important to drive new research. This time-demanding task can be supported by emerging computational approaches based on text mining which offer a great opportunity to organize and retrieve the desired information efficiently from sizable databases. One way to organize existing knowledge on cancer is to utilize the widely accepted framework of the Hallmarks of Cancer. These hallmarks refer to the alterations in cell behaviour that characterize the cancer cell. Results We created an extensive Hallmarks of Cancer taxonomy and developed automatic text mining methodology and a tool (CHAT) capable of retrieving and organizing millions of cancer-related references from PubMed into the taxonomy. The efficiency and accuracy of the tool was evaluated intrinsically as well as extrinsically by case studies. The correlations identified by the tool show that it offers a great potential to organize and correctly classify cancer-related literature. Furthermore, the tool can be useful, for example, in identifying hallmarks associated with extrinsic factors, biomarkers and therapeutics targets. Availability and implementation CHAT can be accessed at: http://chat.lionproject.net. The corpus of hallmark-annotated PubMed abstracts and the software are available at: http://chat.lionproject.net/about. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.
منابع مشابه
Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organise and evaluate scientific literature on cancer
Motivation: To understand the molecular mechanisms involved in cancer development, significant efforts are being invested in cancer research. This has resulted in millions of scientific articles. An efficient and thorough review of the existing literature is crucially important to drive new research. This time-demanding task can be supported by emerging computational approaches based on text mi...
متن کاملAutomatic semantic classification of scientific literature according to the hallmarks of cancer
MOTIVATION The hallmarks of cancer have become highly influential in cancer research. They reduce the complexity of cancer into 10 principles (e.g. resisting cell death and sustaining proliferative signaling) that explain the biological capabilities acquired during the development of human tumors. Since new research depends crucially on existing knowledge, technology for semantic classification...
متن کاملAn Investigation on the User Behavior in Social Commerce Platforms: A Text Analytics Approach
Nowadays, the tourism industry accounts for approximately 10% of the global GDP, while it only contributes 3% of the economy in Iran. Since the pressure of US sanctions increases day after day on the Iranian economy, the necessity of paying attention to this industry as a source of foreign currency is felt more than ever. The purpose of this research is to analyze the reviews of users of social...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 33 شماره
صفحات -
تاریخ انتشار 2017